skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Mei-Fu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Processes of magma generation and transportation in global mid‐ocean ridges are key to understanding lithospheric architecture at divergent plate boundaries. These magma dynamics are dependent on spreading rate and melt flux, where the SW Indian Ridge represents an end‐member. The vertical extent of ridge magmatic systems and the depth of axial magma chambers (AMCs) are greatly debated, in particular at ultraslow‐spreading ridges. Here we present detailed mineralogical studies of high‐Mg and low‐Mg basalts from a single dredge on Southwest Indian Ridge (SWIR) at 45°E. High‐Mg basalts (MgO = ∼7.1 wt.%) contain high Mg# olivine (Ol, Fo = 85–89) and high‐An plagioclase (Pl, An = 66–83) as phenocrysts, whereas low‐Mg basalts contain low‐Mg# Ol and low‐An Pl (Fo = 75–78, An = 50–62) as phenocrysts or glomerocrysts. One low‐Mg basalt also contains normally zoned Ol and Pl, the core and rim of which are compositionally similar to those in high‐Mg and low‐Mg basalts, respectively. Mineral barometers and MELTS simulation indicate that the high‐Mg melts started to crystallize at ∼32 ± 7.8 km, close to the base of the lithosphere. The low‐Mg melts may have evolved from the high‐Mg melts in an AMC at a depth of ∼13 ± 7.8 km. Such great depths of magma crystallization and the AMC are likely the result of enhanced conductive cooling at ultraslow‐spreading ridges. Combined with diffusion chronometers, the basaltic melts could have ascended from the AMC to seafloor within 2 weeks to 3 months at average rates of ∼0.002–0.01 m/s, which are the slowest reported to date among global ridge systems and may characterize mantle melt transport at the slow end of the ridge spreading spectrum. 
    more » « less
  2. Abstract Arc magmas are produced from the mantle wedge, with possible addition of fluids and melts derived from serpentinites and sediments in the subducting slab. Identification of various sources and their relevant contributions to such magmas is challenging; in particular, at continental arcs where crustal assimilation may overprint initial geochemical signatures. This study presents oxygen isotopic compositions of zoned olivine grains from post-caldera basalts and boron contents and isotopes of these basalts and glassy melt inclusions hosted in quartz and clinopyroxene of silicic tuffs in the Toba volcanic system, Indonesia. High-magnesian (≥87 mol% Fo [forsterite]) cores of olivine in the basalts have δ18O values ranging from 5.12‰ to 6.14‰, indicating that the mantle source underneath Toba is variably enriched in 18O. Olivine with <87 mol% Fo has highly variable (4.8–7.2‰), but overall increased, δ18O values, interpreted to reflect assimilation of high δ18O crustal materials during fractional crystallization. Mass balance calculations constrain the overall volume of crustal assimilation for the basalts as ≤13%. The processes responsible for the 18O-enriched basaltic melts are further constrained by boron data that indicate the addition of <0.1 wt% fluids to the mantle, >40% of the fluids being derived from serpentinites and others from altered oceanic crust and sediments. This amount of fluids can increase δ18O of the magma by only ~0.02‰. Approximately 6–9% sediment-derived melt hybridization in the mantle wedge is further needed to yield basaltic melts with δ18O values in equilibrium with those of the high-Fo olivine cores. The cogenetic silicic tuffs, on the other hand, seem to record a higher proportion of fluid addition dominated by sediment-derived fluids to the mantle source, in addition to crustal assimilation. Our reconnaissance study therefore demonstrates the application of combined B and O isotopes to differentiate between melts and fluids derived from serpentinites and sediments in the subducted slab—an application that can be applied to arc magmas worldwide. 
    more » « less